Biotechnological promises of Fe-filled CNTs for cell shepherding and magnetic fluid hyperthermia applications.

نویسندگان

  • Florent Pineux
  • Riccardo Marega
  • Antoine Stopin
  • Alessandro La Torre
  • Yann Garcia
  • Eamonn Devlin
  • Carine Michiels
  • Andrei N Khlobystov
  • Davide Bonifazi
چکیده

Fe-filled carbon nanotubes (Fe@CNTs) recently emerged as an effective class of hybrid nanoparticles for biotechnological applications, such as magnetic cell sorting and magnetic fluid hyperthermia. Aiming at studying the effects of both the Fe loading and the magnetocrystalline characteristics in these applications, we describe herein the preparation of Fe@CNTs containing different Fe phases that, upon functionalization with the antibody Cetuximab (Ctxb), allow the targeting of cancer cells. Our experimental findings reveal that an optimal Ctxb/Fe weight ratio of 1.2 is needed for efficient magnetic cell shepherding, whereas enhanced MFH-induced mortality (70 vs. 15%) can be reached with hybrids enriched in the coercive Fe(3)C phase. These results suggest that a synergistic effect between the Ab loading and the Fe distribution in each nanotube exists, for which the maximum shepherding and hyperthermia effects are observed when higher densities of Fe@CNTs featuring the more coercive phase are interfaced with the cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Instability of Coupled CNTs Conveying Viscous Fluid

In the present study, nonlinear vibration of coupled carbon nanotubes (CNTs) in presence of surface effect is investigated based on nonlocal Euler-Bernoulli beam (EBB) theory. CNTs are embedded in a visco-elastic medium and placed in the uniform longitudinal magnetic field. Using von Kármán geometric nonlinearity and Hamilton’s principle, the nonlinear higher order governing equations are deriv...

متن کامل

Study on Fe3O4 Magnetic Nanoparticles ‎Size Effect on Temperature Distribution ‎of Tumor in Hyperthermia: A Finite ‎Element Method ‎

   In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...

متن کامل

Simulation of tissue heating by magnetic fluid hyperthermia

Objective: Magnetic fluid hyperthermia is a technique in which thermal energy is generated by magnetic nanoparticles (MNPs) that are excited by an alternating magnetic field (AC field). During hyperthermia, in-vivo monitoring of elevation of temperature relies on invasive insertion of conventional thermometers, or employment of thermo-sensitive cameras that lack high precision....

متن کامل

Effect of Magnetic Fluid Hyperthermia on Implanted Melanoma in Mouse Models

Background: Nowadays, magnetic nanoparticles (MNPs) have received much attention because of their enormous potentials in many fields such as magnetic fluid hyperthermia (MFH). The goal of hyperthermia is to increase the temperature of malignant cells to destroy them without any lethal effect on normal tissues. To investigate the effectiveness of cancer therapy by magnetic fluid hyperthermia, Fe...

متن کامل

An Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications

Cobalt ferrite nanoparticles (CoFe2O4) are well known for some distinctive characteristics such as high magnetic permeability and coercive force, good saturation magnetization, excellent physical, and chemical stability, which make them so attractive for magnetic storage, magnetic resonance imaging (MRI), drug delivery, optical-magnetic equipment, radar absorbing materials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 48  شماره 

صفحات  -

تاریخ انتشار 2015